

#### To share or not to share....

DATA



Perspectives from fish telemetry researchers on data sharing

Vivian M. Nguyen, Jill Brooks, Robert J. Lennox, Neal Haddaway, Frederick G. Whoriskey, Nathan Young, and Steven J. Cooke

#### **Data Sharing**

### Providing access to otherwise privately stored data





#### To share

- 1. Transparency: verification and reproduction of research
- 2. Accelerate scientific understanding: more datasets, innovation, new developments
- 3. Reduce cost of research and increase return on research investments
- 4. New ideas: open discussion, different questions, test new hypotheses
- **5. Institutional requirement:** funding agencies, journals





Data Surveys Instruments Collaboration Results Education Future Contact

Search www.sdss.org

Search

### Data sharing in astronomy lead to mapping the Universe

The Sloan Digital Sky Survey: Mapping the Universe

#### ... or not to share

- **1. Ethical and legal issues**: privacy, exploitation of information
- **2. Technical and logistical issues**: time and effort, lack of standardization, lack of IT support and structure
- 3. Motivational: less time for their own publication, competitive risk (being scooped/ challenged), lack of acknowledgement, lack of demand

#### Data sharing in animal telemetry

#### REVIEW

# Aquatic animal telemetry: A panoramic window into the underwater world

Nigel E. Hussey<sup>1</sup>, Steven T. Kessel<sup>1</sup>, Kim Aarestrup<sup>2</sup>, Steven J. Cooke<sup>3</sup>, Paul D. Cowley<sup>4</sup>, Aaron T. Fisk<sup>1</sup>, Robert G. Harcourt<sup>5</sup>, Kim N. Holland<sup>6</sup>, Sara J. Iverson<sup>7,\*</sup>, John F. Kocik<sup>8</sup>, Joanna E. Mills Flemming<sup>9</sup>, Fred G. Whoriskey<sup>7</sup>



 Advances in technology revolutionized scope and scales of questions

"The next advance in aquatic telemetry will be the development of a global collaborative effort to facilitate infrastructure and data sharing and management over scales not previously possible."

#### Data sharing in animal telemetry

Mechanisms for archiving and potentially sharing animal movement data

- **OTN** Ocean Tracking Network
- **AATAMS** Australian Animal Tracking and Monitoring Systems
- Move Bank
- ATN Animal Tracking Network
- GLATOS Great Lakes Acoustic Telemetry Observation System
- **GTOPP** Global Tagging of Pelagic Predators
- Others....











- 1. Identify **perceived barriers** to participation in sharing fish telemetry data in public databases
- 2. Identify examples of **benefits and pitfalls** of sharing data
- 3. Provide **recommendations** to foster data sharing in the fish telemetry research community

## Social science approach: mixed methods



Share data? (N= 182)

YES NO (44%) (56%)

Share data? (N= 182)

YES NO (44%) (56%)

Concerns with sharing data?

39% overall have concerns



39% overall have concerns

### Lack of satisfaction with sharing procedures?



#### Concerns: 1) misuse of data

| Concerns (coded)                 | Number of<br>mentions |  |  |
|----------------------------------|-----------------------|--|--|
| Misinterpretation of data        | 45                    |  |  |
| Data usage before publication    | 26                    |  |  |
| Ownership/proprietorship of data | 17                    |  |  |
| Lack of recognition              | 10                    |  |  |
| Exploiting animal information    | 8                     |  |  |
| Non-reciprocal sharing of data   | 3                     |  |  |
| Cost of sharing                  | 3                     |  |  |

#### Concerns: misuse of data

• Misinterpretation (45 x)

One of the guys used my data as advertisement for sharing. I went to a meeting and he **presented my data wrongly**.... To me it emphasized that it was **dangerous to have data out there that anyone can pull off the web and do what they want**. (Female, 20-29 years)

#### Concerns: misuse of data

- Misinterpretation (45 x)
- Exploitation of animal information (8 x)

### WA shark cull: killing tagged great white risks safety of beachgoers, expert says

Shark policy expert says tagging data provides a valuable warning system of what shark population is doing and culling tagged sharks goes against the purpose



### Concerns: 2) lost of opportunity and ownership (motivational)

| Concerns (coded)                 | Number of<br>mentions |  |  |
|----------------------------------|-----------------------|--|--|
| Misinterpretation of data        | 45                    |  |  |
| Data usage before publication    | 26                    |  |  |
| Ownership/proprietorship of data | 17                    |  |  |
| Lack of recognition              | 10                    |  |  |
| Exploiting animal information    | 8                     |  |  |
| Non-reciprocal sharing of data   | 3                     |  |  |
| Cost of sharing                  | 3                     |  |  |

## Concerns: lost of opportunity and ownership

Someone might use the data before I get the chance to publish all my papers. It was expensive to collect and took a lot of effort! Nonetheless once I have published all my papers I would be happy to publically archive the data- in fact I probably should. (Male, 30-39 years old)

#### Concerns: 3) technical and logistical

| Concerns (coded)                 | Number of<br>mentions |  |  |
|----------------------------------|-----------------------|--|--|
| Misinterpretation of data        | 45                    |  |  |
| Data usage before publication    | 26                    |  |  |
| Ownership/proprietorship of data | 17                    |  |  |
| Lack of recognition              | 10                    |  |  |
| Exploiting animal information    | 8                     |  |  |
| Non-reciprocal sharing of data   | 3                     |  |  |
| Cost of sharing                  | 3                     |  |  |

#### **Concerns: technical and logistical**

• Costly to share data (3x)

Some of my funding agencies are beginning to require sharing of data, but are **not giving us the upfront tools or funding to make this a reality**.... Also, I sometimes work with very **large telemetry datasets** (some in the petabytes) and there is no such data sharing service available **that can handle this large of a dataset.** (Male, 30-39 years old, North America)

#### Have any concerns materialized?

• 28% = YES (11 out of 39)

I had one project where we collected a fair bit of telemetry data on [species]...it was challenging... huge design phase with telemetry to build tag for small [species]. We recaptured individuals to put new transmitter...we shared info with another researcher and then **ultimately a publication came out of it with zero acknowledgement**.

(Male, 40-49 years old)



32% overall have used shared data





34% overall have benefitted from sharing data



34% overall have benefitted from sharing data

### Benefits: 1) Tackling more questions and complex problems

| Benefit (coded)                                       | Number of mentions |
|-------------------------------------------------------|--------------------|
| Increased geographic coverage                         | 28                 |
| Collaborations                                        | 24                 |
| Publication                                           | 11                 |
| Outreach and community involvement                    | 6                  |
| Establishment and respect within scientific community | 3                  |
| Grants                                                | 3                  |
| Management and policy change                          | 2                  |
| Co-authorship                                         | 2                  |
| Employment                                            | 1                  |

#### Benefits: 2) Personal benefits

| Benefit (coded)                                       | Number of mentions |
|-------------------------------------------------------|--------------------|
| Increased detection range                             | 28                 |
| Collaborations                                        | 24                 |
| Publication                                           | 11                 |
| Outreach and community involvement                    | 6                  |
| Establishment and respect within scientific community | 3                  |
| Grants                                                | 3                  |
| Management and policy change                          | 2                  |
| Co-authorship                                         | 2                  |
| Employment                                            | 1                  |

### Benefits: 3) Influence community and policy

| Benefit (coded)                                       | Number of mentions |
|-------------------------------------------------------|--------------------|
| Increased detection range                             | 28                 |
| Collaborations                                        | 24                 |
| Publication                                           | 11                 |
| Outreach and community involvement                    | 6                  |
| Establishment and respect within scientific community | 3                  |
| Grants                                                | 3                  |
| Management and policy change                          | 2                  |
| Co-authorship                                         | 2                  |
| Employment                                            | 1                  |

- Data sharing as norm in fish telemetry
- Raising awareness of the benefits and value of sharing fish telemetry data
  - Personal benefits
  - Community and conservation benefits



- Data sharing as norm in fish telemetry
- Rules, protocols, enforcement and norms need to be established by telemetry databases
  - Citing datasets
  - Flexible embargo services controlled by researcher

- Data sharing as norm in fish telemetry
- 3. Funding agencies, institutions, journals can act as stewards for data sharing by restructuring rewards and incentives
  - Recognition for sharing (Badges earned in *Psychological Science*)



- Data sharing as norm in fish telemetry
- 3. Funding agencies, institutions, journals can act as stewards for data sharing by restructuring rewards and incentives



- Data sharing as norm in fish telemetry
- 4. Standardizing data and fostering data management skills as a prerequisite for data sharing
  - Identify appropriate data standardization prior to project start
  - Provide IT support and structure for easy sharing
  - Improve quality of data for reuse

#### Conclusion

- Findings can assist:
  - Leadership of telemetry networks
  - Developing data sharing mechanisms that address researcher concerns
- Tangible examples of benefits and pitfalls of sharing
- Move towards a culture of sharing similar to genomics and astronomy to advance fisheries management and conservation

#### Acknowledgements

- Thank you to all participants who participated!
- Thank you to OTN for logistical support









#### Thank you! Questions?





#### Demographic data

| Variables                          | Freq | %  | Variables                                                 | Freq | %   | Variables                              | Freq | %  |
|------------------------------------|------|----|-----------------------------------------------------------|------|-----|----------------------------------------|------|----|
| Gender (n = 222)<br>Female         | 40   | 18 | Number of projects as principal<br>investigator (n = 280) |      |     | Number of refereed articles<br>(n=253) |      |    |
| Male                               | 182  | 82 | None                                                      | 68   | 24  | 1-4                                    | 140  | 55 |
|                                    | -    | -  | 1-4                                                       | 131  | 47  | 5-9                                    | 60   | 24 |
| Employer (non- mutually exclusive) |      |    | 5-9                                                       | 45   | 16  | 10-14                                  | 18   | 7  |
| Academia                           | 146  |    | 10-14                                                     | 12   | 4   | 15-20                                  | 13   | 5  |
| Federal government                 | 86   |    | >15                                                       | 24   | 9   | 21-25                                  | 2    | <1 |
| Provincial or state government     | 54   |    |                                                           |      |     | 26+                                    | 20   | 8  |
| Industry                           | 8    |    | Location (n = 212)                                        |      |     |                                        |      |    |
| NGO/NPO                            | 21   |    | N America                                                 | 141  | 67  | Number of non-refereed                 |      |    |
| Private                            | 19   |    | Europe                                                    | 36   | 17  | Articles (n=209)                       |      |    |
|                                    |      |    | S Pacific                                                 | 16   | 7.5 | 1-4                                    | 118  | 56 |
| Telemetry experience (n= 220)      |      |    | United Kingdom                                            | 6    | 3   | 5-9                                    | 44   | 21 |
| 1-4 years                          | 47   | 21 | Asia                                                      | 5    | 2   | 10-14                                  | 18   | 9  |
| 5-9 years                          | 74   | 34 | Central and S America                                     | 5    | 2   | 15-20                                  | 13   | 6  |
| 10-20 years                        | 71   | 32 | South Africa                                              | 2    | 1   | 21-25                                  | 2    | <1 |
| >20 years                          | 28   | 13 | Middle East                                               | 1    | 0.5 | 26+                                    | 14   | 7  |
| Age (n=222)                        |      |    | Research Environment (n =224)                             |      |     | Telemetry portion of research          |      |    |
| 20-29 years                        | 20   | 9  | Marine                                                    | 87   | 39  | (n=220)                                |      |    |
| ,<br>30-39 vears                   | 88   | 40 | Freshwater                                                | 53   | 24  | <10%                                   | 58   | 26 |
| 40-49 years                        | 58   | 27 | Both                                                      | 84   | 37  | 10-25%                                 | 42   | 19 |
| 50-59 years                        | 38   | 17 |                                                           |      |     | 26-50%                                 | 54   | 25 |
| 60-69 years                        | 14   | 6  | Telemetry Method (non-mutually                            |      |     | 51-75%                                 | 26   | 12 |
| 70 + years                         | 3    | 1  | exclusive)                                                |      |     | >75%                                   | 40   | 18 |
|                                    |      |    | Radio                                                     | 107  |     |                                        |      |    |
|                                    |      |    | Acoustic                                                  | 200  |     | Telemetry Network (n=302)              |      |    |
|                                    |      |    | Satellite                                                 | 70   |     | Yes                                    | 123  | 55 |
|                                    |      |    |                                                           |      |     | No                                     | 99   | 45 |
|                                    |      |    |                                                           |      |     |                                        |      |    |

#### To share



- Common genetic variants that occur in human beings
- Lead to new methods of preventing, diagnosing and treating disease





National Institute on Drug Abuse

- DNA sequencing and protein structures identified
- Support and progress scientific research across globe



#### Questions

- 1. Do you share your telemetry research data?
- 2. Do you have concerns with sharing research data? Describe.
- 3. Have any of those concerns actually materialized? Describe.
- 4. Have you benefited from publicly sharing your data? Describe.

#### Questions

- Do you share your telemetry research data in publicly available databases?
- Do you have concerns with sharing research data in publicly available databases? If yes, please describe those concerns.
- Have any of those concerns actually materialized? (e.g., did your concerns come to reality?) Please describe.
- Have you benefited from publicly sharing your data (i.e. has anything grown or developed out of sharing your data)? If yes, how?
- Have you used shared data for your own research related to fish telemetry? If yes, please describe how it was used?