Moving forward: Advances in modeling and visualizing movement data

OTN 4.8: Data Modelling and Visualization

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming
Modelling Marine Animal Tracks with TMB

first-Difference Correlated Random Walk

\[d_t = x_t - x_{t-1} \quad d_t \sim \gamma T d_{t-1} + \mathcal{N}_2(0, \Sigma) \]

\[T(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \quad \Sigma = \begin{pmatrix} \sigma^2_{\text{lon}} & \rho \sigma_{\text{lon}} \sigma_{\text{lat}} \\ \rho \sigma_{\text{lon}} \sigma_{\text{lat}} & \sigma^2_{\text{lat}} \end{pmatrix} \]

\[y_{t,i} = (1 - j_i)x_{t-1} + j_i x_t + \epsilon_t \]
Modelling Individual Marine Animal Tracks

Albertsen et al. 2015

Auger-Méthée et al. 2016

Kim Whoriskey, Marie Auger-Méthée, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Estimating discrete behavioural states

Behaviour Equation

\[b_i = \{0, 1\} \]

\[b_i \sim \text{Bernoulli}(\alpha_{b_{i-1}}) \]

\[\gamma_{b_i} = \{\gamma_0, \gamma_1\} \]

Movement Equation

\[d_i = x_i - x_{i-1} \]

\[d_i = \gamma_{b_{i-1}} T d_{i-1} + \epsilon_i \]
Estimating discrete behavioural states

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Estimating discrete behavioural states

SHMMM/SHaMM

Great Lakes Acoustic Telemetry Observation System

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Estimating discrete behavioural states

swim

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Estimating continuous behavioural states

Behaviour Equation

\[\gamma_i = \gamma_{i-1} + \nu_i \]

Movement Equation

\[d_i = x_i - x_{i-1} \]

\[d_i = \gamma_i \frac{\Delta t_i}{\Delta t_{i-1}} (d_{i-1}) + \epsilon_i \]
Estimating continuous behavioural states
Estimating grey seal space use - INLA

Gaussian Random Field

Moving forward: Advances in modeling and visualizing movement data
Estimating grey seal space use over time - INLA

Moving forward: Advances in modeling and visualizing movement data
Relating grey seal space use to prey distribution

Cod Abundance

Bottom Time

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Visualizing aquatic telemetry data

rgl is ...

- an R package (Adler and Murdoch 2015)
- a link between R and WebGL (JavaScript API)

We use rgl to ...

- visualize groups of movement patterns
- visualize animals moving through time
- visualize animals moving in 3D

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Other visualization tools:

- Co-op students (Alex Nunes)
- OTN Trackathon

OTN Workshop:

- Thursday (tomorrow)
- 8:30 AM - NOON
Acknowledgements

Christoffer Albertsen
Tom Binder
Don Bowen
Fran Broell
Vivian Chu
Glenn Crossin

Andrew Derocher
Sara Iverson
Ian Jonsen
Elias Krainsky
Chuck Krueger
Shelley Lang

Damian Lidgard
Benia Nowak
Jon Pye
Nancy Shackle
Katie Studholme
Fred Whoriskey

Kim Whoriskey, Marie Auger-Méthé, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data
Thank you

Kim Whoriskey, Marie Auger-Méthée, Stuart Carson, Duncan Murdoch, and Joanna Mills Flemming

Moving forward: Advances in modeling and visualizing movement data