Segmentation and characterization of movement-based behavioural patterns of white sharks, *Carcharodon carcharias*, inferred from active acoustic telemetry data

Enrico Gennari^{1,2,3}, Paul Cowley ², Dylan Irion ¹

www.oceans-research.com | info@oceans-research.com

NESEARCH

Marine movement data are:

- multidimensional
- non-independent (autocorrelated)
- gappy (variable sampling intervals)

Gurarie (2008): "Temporal and/or spatial correlation are <u>intrinsic properties</u> of an animal's movement process and is a fundamental feature that <u>distinguishes tracking data from a</u> <u>random sequence of positional data</u>".

O C E A N S RESEARCH

AIMS AND OBJECTIVES

HIGH RES ACOUSTIC DATA

LOW RES SAT DATA

- From high-res active acoustic tracking data of GWS in Mossel Ba (ZA):
- To identify and characterize movement patterns:
 - creating trajectories

FARC

- segmenting trajectories
- clustering segments into movement phases
- To model movement phases with some driving covariates to help defining the behaviour behind each movement phase.
 O C E A N S

Segmentation of movement data (1)

- 1. Movement = time series of variations in position : X(i) and $\Theta(i)$
- 2. WGS 84 into UTM 34S : trajectories
- 3. In gappy data, distributions influences by sampling rates
- 4. For each segment: V (t) and Θ (t)
- 5. $V_p(t) = V(t) \cos(\Theta(t))$

 $V_t(t) = V(t) \sin(\Theta(t))$

Segmentation of movement data (2)

- 5. R: BCPA package (Gurarie, 2008)
 - Define segments μ_i , σ_i , \mathcal{T}_i for each orthogonal component of V(i)
 - Sweeping (moving) window (30 steps) + MLE to identify times of MLCP

- BIC to identify combination of significant parameters
- Merging the BCPA results for Vp and Vt

Characterization of movement phases

- R: Bayesclust package (Gopal *et al.*, 2012)
- Without a priori assumptions on n. clusters and threshold distances
- Empirical Posterior Probabilities
- Combines similar segments
- Reduce possible over-segmentation by the BCPA

Creates Research | Exer Characterization of behavioural

- GAMMs in R: MGCV package (Wood, 2011)
- Influence of explanatory variables on movement phases:
 - Wind strength and direction
 - Tidal phase
 - Time of Day (TOD)
 - Location
- Binomial distributions with logit transformation
- Individual sharks included as a random term
- Suitable temporal correlation structure (obtained from the maximum value of 7 from the BCPA)
- AIC; cyclic cubic regression splines (cc) used for TOD-models (as the variable is circular); low rank isotropic smoothers (tp) for all the other models
- 2 size classes based on Estrada et al (2006): <3.4 m TL and ≥ 3.4 m TL modelled separately for TOD and location

Results

- 6 white sharks tracked in Mossel Bay, South Africa
- From 1.7 m TL to 4.2 m TL (0.5 m increment)
- 26 tracking sessions
- Combined tracking effort: 700 hrs over 1,446 Km
- 7 movement-based behavioural clusters with posterior probability of 97%

Febrasging on fish

NESEARCH

Patrolling for pinnipeds

ВСРА	BCPA parameters	Vi (A) Vi (A)	
parameters	Occurrence Mean ROM	12.3 % 0.3 m/s	
Occurrence	12.3	12.3 %	
Mean ROM	0.8 m	0.8 m/s	

BCPA parameters	BCPA parameters Occurrence Mean BOM	Vp (2) V1 (2) 17.9% 0.9 m/s	
Occurrence	17.9	17.9 %	
Mean ROM	0.9 m	0.9 m/s	

Romageing on pinnipeds

- Larger white sharks spent less time in this phase
- No size threshold but a continuum self-learnt behaviour
- Not best candidate for calculation on RMR (Semmens *et al.*, 2013)
 E A N S

Phase 3, 4, 5 Travelling Occur

Occurrence42 %Average Mean2-3 km/h

Low-location related probabilities (not ARS) Related to movement *per se*

Phase 3: medium speed highly directional (intersite, large jumps in Lévy flights)

Phase 4: faster offshore (highest $V_p(\mathcal{T})$) (individual learning + hearing threshold)

Phase 5: slower inshore with correlated turns $(Vt(\mathcal{C}))$: energy saving roaming (random walk component of in Lévy flights)

Scavenging around chumming boats

- Only converging significant wind-related model
- Around chumming vessels: wind limit vessels not sharks
- Slowest ROM : scavenging

Weighted Behavioural Transition Matrix

CONCLUSIONS

The use of a semi-unsupervised routine (BCPA + Bayesian framework + mixed modelling) allowed to characterize movement-based behavioural patterns without *a priori* definitions of movement parameters based on the vicinity of the animal to geographic landmarks

Future applications

- 3-dimensional BCPA on white sharks
- Applicable to all of you using VPS on other species
- Sat data of geographic positions + state space models + using behavioural classes parameters = run simulations to match the sat data and extrapolate behaviours
- Predicting behaviours in problematic areas (Cape Town, Western Australia)
- Identify not recognised behaviours (mating, birthing etc...)

South African famous proverb: "We need to learn more why animals move as we all know that animals...

OCEANS

RESEARCH

RESEARCH

C

EANS

RHODES UNIVERSITY Where leaders learn

QUESTIONS ?