Plan for the worst, hope for the best: Using pilot data and simulation to design telemetry studies

C.M. Holbrook, D.W. Hondorp T.A. Hayden, T.R. Binder, C.C. Krueger

Acknowledgements

Great Lakes Restoration Initiative
Accountability – Action – Urgency

Telemetry Study Design

- advance scientific knowledge **Hypotheses** relevant to resource management Study **Objectives Analyses** Study Design (telemetry system) - system performance Inferences

Telemetry Study Design

2 concerns (of many)

1. Collisions

Objective:

Determine min. tag delay & max. number of tagged fish to minimize destructive tag code collisions.

2. Receiver spacing (detection range)

Objective:

Determine max. receiver spacing to detect all fish passing a receiver line.

Multiple Pulse Coded Tags (e.g., Vemco Global coding)

Destructive collision

Objective 1:

Determine min. tag delay & max. number of tagged fish to minimize destructive tag code collisions.

Choosing tag delay:

Simulate collisions (R function)

Prob. of collision "Effective" delay

Burst duration Tag delay (uniform dist.) # of fish present

Choosing tag delay:

Choosing tag delay:

Choosing tag delay:

Nom. delay 90 s 120 s

Choosing tag delay:

Choosing tag delay:

Nom.

2. Receiver spacing (detection range)

Objective:

Determine max. receiver spacing to detect all

fish passing a receiver line.

Approach:

- 1. Describe detection range curve in situ test
- 2. Simulate fish passing receiver line
 - estimate line detection probability

- 7 receivers (VR2W)
- 2 sentinel tags
 - V16-4H (25 s)

Simulate fish passing receiver line (R function)

Inspired by Pincock (2009) http://www.vemco.com/pdf/

line_performance.pdf
nput parameters

Detection prob. curve

Simulate fish passing receiver line (R function)

Inspired by Pincock (2009) http://www.vemco.com/pdf/

line_performance.pdf
nput parameters

- Detection prob. curve
- –Receiver spacing (m)

Simulate fish passing receiver line (R function)

Inspired by Pincock (2009) http://www.vemco.com/pdf/

line_performance.pdf
nput parameters

Detection prob. curve

- -Receiver spacing (m)
- -Fish velocity (m/s)
- -Tag delay range (s)
- -Burst duration (s)

Simulate fish passing receiver line (R function)

Inspired by Pincock (2009) http://www.vemco.com/pdf/

line_performance.pdf
nput parameters

- Detection prob. curve
- -Receiver spacing (m)
- -Fish velocity (m/s)
- -Tag delay range (s)
- -Burst duration (s)

At four locations over two years:

- Estimated daily detection range cur
 - 2 sentinel tags at each site
- Estimated line detection probability
 - simulation

Site 1 - 1000 m spacing

Summary

-Pilot data invaluable ("Plan for the worst...") but need to capture real variation in performance across space

and time.

Summary

- -Pilot data invaluable ("Plan for the worst...") but need to capture real variation in performance across space and time.
- -Can predict perform during, and after a s
- -Accessibility will be key to broader use c simulation tools.

Questions?

Tool #1: Collision Probability Simulator

Nom.

GLATOS Network

